Review on probabilistic forecasting of wind power generation
Yao Zhang,
Jianxue Wang and
Xifan Wang
Renewable and Sustainable Energy Reviews, 2014, vol. 32, issue C, 255-270
Abstract:
The randomness and intermittence of wind resources is the biggest challenge in the integration of wind power into the power system. Accurate forecasting of wind power generation is an efficient tool to deal with such problem. Conventional wind power forecasting produces a value, or the conditional expectation of wind power output at a time point in the future. However, any prediction involves inherent uncertainty. In recent years, several probabilistic forecasting approaches have been reported in wind power forecasting studies. Compared to currently wide-used point forecasts, probabilistic forecasts could provide additional quantitative information on the uncertainty associated with wind power generation. For decision-makings in the uncertainty environment, probabilistic forecasts are optimal inputs. A review of state-of-the-art methods and new developments in wind power probabilistic forecasting is presented in this paper. Firstly, three different representations of wind power uncertainty are briefly introduced. Then, different forecasting methods are discussed. These methods are classified into three categories in terms of uncertainty representation, i.e. probabilistic forecasts (parametric and non-parametric), risk index forecasts and space-time scenario forecasts. Finally, requirements and the overall framework of the uncertainty forecasting evaluation are summarized. In addition, this article also describes current challenges and future developments associated with wind power probabilistic prediction.
Keywords: Probabilistic forecasting; Uncertainty forecasting; Decision-making; Stochastic optimization; Uncertainty representation; Parametric and non-parametric density; Forecasting evaluation (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (112)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114000446
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:32:y:2014:i:c:p:255-270
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.01.033
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).