Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models
Shahaboddin Shamshirband (),
Dalibor Petković,
Nor Badrul Anuar and
Abdullah Gani
Renewable and Sustainable Energy Reviews, 2014, vol. 36, issue C, 270-276
Abstract:
When the turbine extracts power from the wind, a wake evolves downstream of the turbine. The turbines operating in the wake are not only subjected to a decreased wind speed but also increased dynamic loading arising from the increased turbulence induced by the upstream turbines. This increased turbulence must be accounted, when selecting a turbine. This increase in turbulence intensity can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. For this reason, a large number of studies have been established concerning the calculation of wake added turbulence. Even though a number of mathematical functions have been proposed for modeling the wake added turbulence, there are still disadvantages of the models like very demanding in terms of calculation time. Artificial neural networks (ANN) can be used as alternative to analytical approach as ANN offers advantages such as no required knowledge of internal system parameters, compact solution for multi-variable problems and fast calculation. In this investigation adaptive neuro-fuzzy inference system (ANFIS), which is a specific type of the ANN family, was used to predict the wake added turbulence. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system (FIS). This intelligent algorithm is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Keywords: Wind energy; Wake wind speed; Turbulence model; Wake added turbulence; Adaptive neuro-fuzzy system (ANFIS) (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114003025
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:36:y:2014:i:c:p:270-276
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.04.064
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().