The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model
Joern Hoppmann,
Jonas Volland,
Tobias S. Schmidt and
Volker H. Hoffmann
Renewable and Sustainable Energy Reviews, 2014, vol. 39, issue C, 1101-1118
Abstract:
Battery storage is generally considered an effective means for reducing the intermittency of electricity generated by solar photovoltaic (PV) systems. However, currently it remains unclear when and under which conditions battery storage can be profitably operated in residential PV systems without policy support. Based on a review of previous studies that have examined the economics of integrated PV-battery systems, in this paper we devise a simulation model that investigates the economic viability of battery storage for residential PV in Germany under eight different electricity price scenarios from 2013 to 2022. In contrast to previous forward-looking studies, we assume that no premium is paid for solar photovoltaic power and/or self-consumed electricity. Additionally, we run the model with a large number of different PV and storage capacities to determine the economically optimal configuration in terms of system size. We find that already in 2013 investments in storage solutions were economically viable for small PV systems. Given the assumptions of our model, the optimal size of both residential PV systems and battery storage rises significantly in the future. Higher electricity retail prices, lower electricity wholesale prices or limited access to the electricity wholesale market add to the profitability of storage. We conclude that additional policy incentives to foster investments in battery storage for residential PV in Germany will only be necessary in the short run. At the same time, the impending profitability of integrated PV-storage systems is likely to further spur the ongoing trend toward distributed electricity generation with major implications for the electricity sector.
Keywords: Solar photovoltaic power; Solar energy; Battery storage; Distributed electricity generation; Techno-economic model; Simulation; Electricity price (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (174)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114005206
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:39:y:2014:i:c:p:1101-1118
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.07.068
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().