State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review
Mohamed R.H. Abdel-Salam,
Gaoming Ge,
Melanie Fauchoux,
Robert W. Besant and
Carey J. Simonson
Renewable and Sustainable Energy Reviews, 2014, vol. 39, issue C, 700-728
Abstract:
Buildings are responsible for a significant portion of the global energy consumption. In particular, heating, ventilation, and air-conditioning (HVAC) systems in buildings consume significant amounts of energy. Liquid desiccant dehumidification and energy recovery are effective energy conservation technologies in HVAC systems. Direct-contact liquid desiccant air-conditioning systems have the risk of carry-over of aerosol droplets to the supply airstream, which may cause health problems for occupants and corrosion of the ducting system. Liquid-to-air membrane energy exchanger (LAMEE) is a novel semi-permeable membrane-based liquid desiccant energy exchanger, which transfer heat and moisture simultaneously but can eliminate the desiccant solution aerosol carry-over problem. Two LAMEEs can also be used to constitute a run-around membrane energy exchanger (RAMEE) system to recover heat and moisture from exhaust air in buildings. In the past decade, research and development of LAMEEs has been very active to show that high effectiveness is possible. This paper presents a comprehensive review of the design and performance of LAMEEs.
Keywords: Liquid-to-air membrane energy exchanger (LAMEE); Liquid desiccant; Semi-permeable membrane; Dehumidification; Regeneration; Effectiveness (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114004742
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:39:y:2014:i:c:p:700-728
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.07.022
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().