Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review
Sanjay K. Sharma and
Vilas R. Kalamkar
Renewable and Sustainable Energy Reviews, 2015, vol. 41, issue C, 413-435
Abstract:
Enhancement of heat transfer in the solar air heater ducts can be achieved by several means like using baffles, fins, ribs and groves. Until now, various attempts have been made to investigate the effects of these geometries on the enhancement of the heat transfer rate; however it is achieved at the cost of the increase in the pressure drop across the surfaces on which these elements are mounted. This paper is an attempt to summarize and conclude the investigations involving the use of small height elements and surface protrusions on absorber plate and channel walls as artificial roughness elements of various geometries and its effect on heat transfer and friction factor through experiments. It also summarizes the various correlations which have been developed for Nusselt number (Nu) and Friction factor (f) and reported in the previous investigations. The comparative study has been done to understand the results of these investigations for solar air heaters with different roughness elements on its absorber surface.
Keywords: Artificial roughness; Thermo-hydraulic; Heat transfer; Solar air heater (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114007278
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:41:y:2015:i:c:p:413-435
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.08.051
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().