An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties
Mohammed Takase,
Ting Zhao,
Min Zhang,
Yao Chen,
Hongyang Liu,
Liuqing Yang and
Xiangyang Wu
Renewable and Sustainable Energy Reviews, 2015, vol. 43, issue C, 495-520
Abstract:
The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. The limited reserve of the fossil fuels is also dwindling alongside escalation in the prices. The threats from these and food insecurity are, however, drawing the attention of researchers for alternative fuel which can be produced from renewable feedstocks. Biodiesel as the most promising alternate is currently produced from conventionally grown edible plant oils such as rapeseed, soybean, sunflower and palm. The use of the edible oils is worsening the current competition of oil for food and for fuel. Focus on the use of non-edible resources is presently directed to jatropha, mahua, pongamia, calophyllum tobacco, cotton oil, etc. Discrepancies between the expectation and realities regarding these non-edible oils are necessitating efforts for diversification of the feedstocks to resources that could guarantee energy production without affecting food security. Neem, karanja, rubber and jatropha are evergreen multipurpose non-edible plants that are widely available and can be grown in diverse socio-economic and environmental conditions. These plants are described as golden trees that have multiple uses such as for fuels, medicines, dyes, ornamentals, feeds, soil enrichment, afforestation, etc. This study was therefore undertaken to explore the multipurpose of these four non-edible tree plants. Among the highlights of this expatiate review include oil as feedstock for biodiesel, the need for non-edible feedstocks, neem, karanja, rubber, jatropha and their value chains, methods of modifying oil to biodiesel, factors affecting biodiesel production, application of the selected non-edible seed biodiesels to engines for performance and emission characteristics and the outlook.
Keywords: Non-edible feedstock; Biodiesel; Transesterification; Sustainable energy; Performance and emission characteristics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032114009800
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:43:y:2015:i:c:p:495-520
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2014.11.049
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().