A review on adsorption cooling systems with silica gel and carbon as adsorbents
Ramesh P. Sah,
Biplab Choudhury and
Ranadip K. Das
Renewable and Sustainable Energy Reviews, 2015, vol. 45, issue C, 123-134
Abstract:
This study presents adsorption cooling systems with silica gel and activated carbon as adsorbents. Adsorption cooling systems powered by low grade heat sources are presented here. Moreover, the previous experimental and numerical models are discussed. The study revealed that the performances of silica gel and activated carbon based adsorption cooling systems are still low and hence these systems are in the stage of demonstration and prototyping. It was concluded that there is still an opportunity for adopting more modern solar energy collecting and transferring technologies, and more advanced design optimization and simulation models. However, heat recovery, mass recovery, multi-bed and multi-stage technologies are promising technologies in improving the COP and SCP of these systems.
Keywords: Adsorption; Refrigeration; Adsorbent; Activated carbon; Methanol (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115000490
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:45:y:2015:i:c:p:123-134
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.01.039
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().