Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications
Ravinder Kumar,
Lakhveer Singh and
A.W. Zularisam
Renewable and Sustainable Energy Reviews, 2016, vol. 56, issue C, 1322-1336
Abstract:
The use of exoelectrogens in microbial fuel cells (MFCs) has given a wide berth to the addition of artificial electron shuttles/conduits as they have the molecular machinery to transfer the electrons exogenously to the electrode surface or to soluble or insoluble electron acceptors. Exoelectrogens transfer the electrons either directly to the electrode surface (via c-Cyts or pili) and/or mediate them by secreting electron shuttles such as, flavins or pyocyanin. Such microorganisms form electroactive biofilms on the electrode surface. They produce cyclopropane fatty acids and exopolysaccahride matrix to modify surface charge, which also provides favorable anchoring points for the retention of c-type cytochromes (c-Cyts). The longer subunit of PilA plays a vital role in cell attachment in the case of a well-known exoelectrogen Geobacter sulfurreducens during biofilm formation. G. sulfurreducens relies on flavin molecules for mediated electron transfer (MET) during initial biofilm formation and on c-Cyts and pili for the direct electron transfer (DET) during the later phase of biofilm formation. A new protein, cbcl inner membrane multiheme c-Cyt has been revealed in G. sulfurreducens that participates in the electron transfer when electron acceptor with low reduction potential (below 0.1 V) is used in the MFCs. On the other hand, inner membrane c-type cytochrome ImcH is involved in the reduction of electron acceptors exhibiting the potential above 0.1V. Shewanella oneidensis, another exoelectrogen expresses CheA-3 histidine protein kinase for chemotactic responses to electron acceptors. S. oneidensis do not produce pili and utilizes flavin-cytochrome complexes to regulate the electron transfer to the electrode surfaces. The inherent electron transfer rates can be increased in order to improve the MFC performance. Such strategies as the anode surface modification with nanoparticles, expression of the genes for flavin biosynthesis pathway in the exoelectrogens, and chemical treatment of the microbial membrane have shown to increase the current outputs in the MFCs. This article provides the latest information about the exoelectrogens and molecular drivers involved in extracellular electron transfer (EET) mechanisms, and also summarizes the important characteristics of electroactive biofilms. It also highlights the different approaches that have been employed to facilitate the EET mechanisms and some uncommon exoelectrogens used in the MFCs recently.
Keywords: Microbial fuel cell; Exoelectrogen; Extracellular electron transfer; Pili; c-type cytochrome (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115014124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:56:y:2016:i:c:p:1322-1336
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.12.029
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().