EconPapers    
Economics at your fingertips  
 

The use of neural modelling to estimate the methane production from slurry fermentation processes

J. Dach, K. Koszela, P. Boniecki, M. Zaborowicz, A. Lewicki, W. Czekała, J. Skwarcz, Wei Qiao, H. Piekarska-Boniecka and I. Białobrzewski

Renewable and Sustainable Energy Reviews, 2016, vol. 56, issue C, 603-610

Abstract: Slurry constitutes an important substrate, increasingly often forming part of biogas production in biogas plants due to the significant content of methane in biogas produced from slurry. Slurry fermentation leads also to its deodorisation and significantly affects the sanitation process. Biogas production constitutes a microbiological process, one affected by many parameters, both physical and chemical. The complexity of the processes occurring during slurry fermentation means it is difficult to identify the significant parameters of a process. Therefore, the fermentation model is often defined as a “black box” method. Artificial neural networks (ANN) are becoming more frequently recognised as a tool to analyse processes that do not have a formal mathematical description (e.g. in the form of a structural model). Neural models enable one to conduct a comprehensive analysis of an issue, including in the context of forecasting biogas emissions during the slurry fermentation process.

Keywords: Methane emissions; Slurry fermentation; Neural modeling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211501360X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:56:y:2016:i:c:p:603-610

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2015.11.093

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:603-610