EconPapers    
Economics at your fingertips  
 

A systematic extreme learning machine approach to analyze visitors׳ thermal comfort at a public urban space

Shahab Kariminia, Shahaboddin Shamshirband (), Shervin Motamedi, Roslan Hashim and Chandrabhushan Roy

Renewable and Sustainable Energy Reviews, 2016, vol. 58, issue C, 751-760

Abstract: Thermal quality of open public spaces in every city influences its residents’ outdoor life. Higher level of thermal comfort attracts more visitors to such places; hence, brings benefits to the community. Previous research works have used the body energy balance or adaptation model for predicting the thermal comfort in outdoor spaces. However, limited research works have applied computational methods in this field. For the first of its’ type, this study applied a systematic approach using a class of soft-computing methodology known as the extreme learning machine (ELM) to forecast the thermal comfort of the subject visitors at an open area in Iran. For data collection, this study used common thermal indices for assessing the thermal perceptions of the subjects. The fieldworks comprised of measuring the microclimatic conditions and interviewing the visitors. This study compared the results of ELM with other conventional soft-computing methods (i.e., artificial neural network (ANN) and genetic programming (GP)). The findings indicate that the ELM results match with the field data. This implies that a model constructed by ELM can accurately predict visitors’ thermal sensations. We conclude that the proposed model’s predictability performance is reliable and superior compared to other approaches (i.e., GP and ANN). Besides, the ELM methodology significantly reduces training time for a Neural Network as compared to the conventional methods.

Keywords: Outdoor thermal comfort; Open urban area; Extreme learning machine; Regression; Moderate climate; Dry climate (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115017049
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:58:y:2016:i:c:p:751-760

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2015.12.321

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:751-760