Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran
Shahaboddin Shamshirband (),
Afram Keivani,
Kasra Mohammadi,
Malrey Lee,
Siti Hafizah Abd Hamid and
Dalibor Petkovic
Renewable and Sustainable Energy Reviews, 2016, vol. 59, issue C, 429-435
Abstract:
The prime aim of this study is appraising the suitability of adaptive neuro-fuzzy inference framework (ANFIS) to compute the monthly wind power density. On this account, the extracted wind power from Weibull functions are utilized for training and testing the developed ANFIS model. The proficiency of the ANFIS model is certified by providing thorough statistical comparisons with artificial neural network (ANN) and genetic programming (GP) techniques. The computed wind power by all models are compared with those obtained using measured data. The study results clearly indicate that the proposed ANFIS model enjoys high capability and reliability to estimate wind power density so that it presents high superiority over the developed ANN and GP models. Based upon relative percentage error (RPE) values, all estimated wind power values via ANFIS model are within the acceptable range of −10% to 10%. Additionally, relative root mean square error (RRMSE) analysis shows that ANFIS model has an excellent performance for estimation of wind power density.
Keywords: Wind power prediction; ANFIS; Weibull distribution; Statistical indicators (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115016524
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:59:y:2016:i:c:p:429-435
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.12.269
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().