Sensor application in Direct Methanol Fuel Cells (DMFCs)
Elnaz Akbari,
Zolkafle Buntat,
Ali Nikoukar,
Azadeh Kheirandish,
Mohsen Khaledian and
Abdolkarim Afroozeh
Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, 1125-1139
Abstract:
Liquid methanol, as an excellent electrochemical energy source, is suitable for developing Direct Methanol Fuel Cells (DMFCs) and is highly promising as a future power solution for the transportation industry. The overall efficiency of such DMFCs is primarily decided by the optimization of the operating conditions. This can be accomplished using high-quality sensors that precisely detect and measure the methanol concentration responsible for DMFCs׳ efficiency. Lately, several sensing methods are developed for accurate determination of methanol concentration. This paper provides a panoramic overview featuring diversified sensors exploited for methanol content assessments. Based on sensors׳ operational criteria, physical and electrochemical classifications are made to demonstrate their notable advantages and disadvantages. The introduction of sensor-less schemes in controlling methanol concentration is emphasized. Past advancements, present challenges and future trends in achieving superior DMFC sensors are underscored. Additionally, the significance of nanomaterials in creating DMFC electrodes is scrutinized.
Keywords: Sensors; Direct Methanol Fuel Cell (DMFC); Graphene and carbon nanotube (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116001878
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:60:y:2016:i:c:p:1125-1139
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.02.001
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().