EconPapers    
Economics at your fingertips  
 

A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems

Yasaman Amanlou, Teymour Tavakoli Hashjin, Barat Ghobadian, G. Najafi and R. Mamat

Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, 1430-1441

Abstract: Conventional high performance silicon solar cells have a potential to generate more electricity by using low concentrating reflectors. Static solar concentrators reduce the cost of photovoltaic systems for given electrical power demand. However, non-uniform illumination on the conventional rectangular photovoltaic panel causes ohmic drops, mainly due to the cell that operates locally at higher irradiance. In this research study a comprehensive review has been carried out regarding Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems. Another objective of the present study is therefore, calculating the pattern of sun incident at low concentration ratios for reflective troughs (V-type, cylindrical and compound parabolic concentrators) and linear Fresnel reflectors. The geometrical parameters of these concentrators were studied to obtain uniform illumination on the common rectangular photovoltaic panels. The designed concentrator with most uniform flux distribution, high concentration ratio and low requirement of mirror was fabricated and tested at ambient conditions. The optical simulation output of different concentrators illustrated the linear Fresnel reflector had uniform irradiance on the photovoltaic panel with standard deviation less than 30% of total income radiation. The experimental results showed that the linear Fresnel reflector has the potential to harvest more energy when using standard silicon solar cells in a basic concentration configuration. Finally thermal, electrical and total performances of a photovoltaic/thermal flat collector were measured with and without concentrator. Using the concentrator improved thermal and overall efficiency by 16% and 17.5% respectively. The maximum overall efficiency for PVT collector with concentrator and without concentrator was 91% and 78% respectively.

Keywords: Reflective concentrator; Optical simulation; Electrical performance; Conventional solar cell; Low Concentration Photovoltaic (LCPV) System (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116002677
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:60:y:2016:i:c:p:1430-1441

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2016.03.032

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:1430-1441