Optimal risk-constrained participation of industrial cogeneration systems in the day-ahead energy markets
Manijeh Alipour,
Kazem Zare and
Behnam Mohammadi-Ivatloo
Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, 421-432
Abstract:
This paper presents an optimal bidding strategy for industrial consumers with cogeneration facilities, power-only and heat-only units to participate in day-ahead electricity market. A information gap decision theory (IGDT) technique is implemented for determining the optimal bidding strategies considering market price uncertainty. IGDT evaluates the robustness/opportunity of optimal bidding strategy under market price uncertainty considering the consumer choice of taking risk-averse or risk-taking decisions. It is confirmed that the risk-averse or risk-taking decisions might affect the expected profit and bidding curve of the consumers.
Keywords: Combined heat and power (CHP) system; Demand response programs; Feasible operation region of CHP units; CHP optimal bidding strategy; Information gap decision theory (IGDT) (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032115015191
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:60:y:2016:i:c:p:421-432
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2015.12.136
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().