Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models
Jianzhou Wang,
Yiliao Song,
Feng Liu and
Ru Hou
Renewable and Sustainable Energy Reviews, 2016, vol. 60, issue C, 960-981
Abstract:
Wind energy, which is clean, inexhaustible and free, has been used to mitigate the crisis of conventional resource depletion. However, wind power is difficult to implement on a large scale because the volatility of wind hinders the prediction of steady and accurate wind power or speed values, especially for multi-step-ahead and long horizon cases. Multi-step-ahead prediction of wind speed is challenging and can be realized by the Weather Research and Forecasting Model (WRF). However, a large error in wind speed will occur due to inaccurate predictions at the beginning of the synoptic process in WRF. Multi-step wind speed predictions using statistical and machine learning methods have rarely been studied because greater numbers of forecasting steps correspond to lower accuracy.
Keywords: Multi-step wind speed forecast; Validation cuckoo search; EEMD; Lazy learning; Robustness (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (64)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116001441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:60:y:2016:i:c:p:960-981
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.01.114
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().