EconPapers    
Economics at your fingertips  
 

Daylight illuminance in urban environments for visual comfort and energy performance

Nazanin Nasrollahi and Elham Shokri

Renewable and Sustainable Energy Reviews, 2016, vol. 66, issue C, 861-874

Abstract: Daylighting is a passive strategy which is significant in increasing the liveliness, performance, and visual comfort of the residents. It helps to reduce the overall electrical energy consumption of a building. The absorbed radiation by the façade and building interior varies depending on different factors including the sky, environmental barriers, vegetation and position of the sun. The urban environmental factors are fairly effective in creating an appropriate visual space while reducing the energy consumption of a building. This paper aims to review the relevant literature including the basic concepts of daylighting, sky types, movement of the sun and effective architectural parameters in an urban context. The importance of these factors regarding daylight absorption by the facade and interior part of a building, visual comfort and energy efficiency are discussed thoroughly. The concluded results indicate that these factors are of high significance and their impact on the amount of daylight and energy consumption is undeniable. Based on the geometry of urban canyons (height to width ratio of a street), by increasing the street width, the amount of radiation reaching urban canyons significantly increases whereas the energy consumption reduces. In addition, by increasing reflectivity coefficient of materials in exterior surfaces of horizontal and vertical directions, the amount of daylight reaching the interior portions of a building is increased and the need for artificial lighting is consequently reduced. Exterior shading devices also provide visual comfort and decrease the energy consumption of a building. The amount of radiation (daylight) shone into a building is considered an energy saving option, which depends on the region climate. However, a street orientation might cause an uneven distribution of the general radiation on surfaces of the urban canyons.

Keywords: Daylight illuminance; Daylighting; Visual comfort; Building façade; Urban context; Energy consumption (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116304853
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:66:y:2016:i:c:p:861-874

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2016.08.052

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:861-874