Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? – A review of carbon footprint calculators
Christiane Peter,
Katharina Helming and
Claas Nendel
Renewable and Sustainable Energy Reviews, 2017, vol. 67, issue C, 461-476
Abstract:
A wide range of calculators have been developed to assess the greenhouse gas (GHG) emissions of agricultural products, including biomass for bioenergy production. However, these calculators often fail in their ability to take into account the differences in pedoclimatic conditions, agricultural management practices and characteristics of perennial crops and crop rotations. As a result, the predictions of GHG emissions by these calculators are characterized by a high level of uncertainty, and calculators may fail in their ability to detect mitigation options along the production chain. The aim of this study was to analyze the available calculators for calculating GHG emissions from energy crop cultivation based on Carbon Footprint (CFP) approaches according to the goal and scope of the calculator, the methodology used to account for GHG emissions from energy crop cultivation, energy crop cultivation management practices and the ability to model crop rotation. Out of 44 environmental assessment calculators for agricultural products, we identified 18 calculators which are capable of assessing GHG emissions from energy crop cultivation. These calculators differ in their goal and scope and which farming operations related to crop management are taken into account; this makes it difficult to compare and interpret the results from these CFP assessments. Only seven calculators out of 18 can calculate GHG emissions from energy crop rotations. At the moment, none of these calculators are able to consider actual effects from energy crops in rotation in the context of nutrient shifts, reductions in the use of agricultural operating needs, or the sequence and composition of crop rotations. However, by expanding the system boundaries of the CFP study, by taking the whole energy crop rotation and local agricultural management practices into account, the opportunity to identify more GHG mitigation options increases.
Keywords: Crop rotation; Carbon Footprint; Crop management; Energy crops; Life Cycle Assessment; Greenhouse gas emissions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116305536
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:67:y:2017:i:c:p:461-476
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.09.059
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().