Short-term electric energy production forecasting at wind power plants in pareto-optimality context
J. Wasilewski and
D. Baczynski
Renewable and Sustainable Energy Reviews, 2017, vol. 69, issue C, 177-187
Abstract:
The paper discusses the possibilities of multi-criteria optimisation of a multi-layer perceptron (MLP) model applied to the short-term (intra- and next-day) wind power forecasting problem. The paper comprises two main parts: a theoretical background and study case using data (wind power production and historical weather forecast) obtained from two wind farms (at different power capacity levels). The problem stated in this paper is to formulate a method allowing for the estimation of a set of prediction models meeting the selected three model learning criteria: nBIAS, nMAE and nRMSE. The two-step NISE method has been used in order to estimate the non-dominated forecast evaluation set. The available data have been divided into three subsets for model learning, testing and validation. Than, a set of prediction model variants has been investigated considering different types of data subsets used for stopping the MLP learning process as well as calculating the forecast error. Additionally, different structures of MLP and learning algorithms have been analysed. Finally the paper is ended with a summary and conclusions.
Keywords: Wind power forecasting; Multi-criteria optimisation; Pareto-front estimation; NonInferior set estimation; Multi-layer perceptron (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116307948
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:69:y:2017:i:c:p:177-187
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.11.026
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().