Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review
Hicham Johra and
Per Heiselberg
Renewable and Sustainable Energy Reviews, 2017, vol. 69, issue C, 19-32
Abstract:
The increasing share of intermittent renewable energy on the grid encourages researchers to develop demand-side management strategies. Passive heat storage in the indoor space is a promising solution to improve the building energy flexibility. It relies on an accurate control of the transient building temperature. However, many of the current numerical models for building energy systems assume empty rooms and do not account entirely for the internal thermal inertia of objects like furniture. This review article points out that such assumption is not valid for dynamic calculations. The furnishing elements and other internal content can have a significant impact on the indoor thermal dynamics and on the occupants’ comfort. There is a clear lack of guidance and studies about the thermo-physical properties of this internal mass. Therefore, this paper suggests representative values for the furniture/indoor thermal mass parameters and presents the different available modelling technics. In addition, the large exposed surface area of furniture pieces offers a good potential for the integration of phase change materials. It can highly increase the effective thermal inertia of light frame buildings without any construction work.
Keywords: Furniture; Thermal mass; Indoor thermal dynamics; Thermal energy storage; Phase change material; Building energy flexibility (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116309042
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:69:y:2017:i:c:p:19-32
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.11.145
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().