A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine
Vishal Saxena,
Niraj Kumar and
Vinod.Kumar Saxena
Renewable and Sustainable Energy Reviews, 2017, vol. 70, issue C, 563-588
Abstract:
Nanofluids are described as a relatively new kind of colloidal solutions with a particle size smaller than one billionth of a meter (1–100nm) suspended in the base fluid so as to enhance the thermophysical properties, which makes them an obvious choice for use in number of commercial applications including engineering, medical sciences, biotechnology, agriculture technology, transportation etc. With the advancement in nanotechnology during last few years, scientific community focuses on improvising combustion behavior, stability aspects, various engine performance parameters and emission characteristics of conventional diesel engine using nanoparticle laden diesel biodiesel fuel blends. Most recently few experimental works on above issues using nanosized metallic, non-metallic, organic and mixed particles in the base liquid fuel for diesel engine have appeared in the open literature. The obtained results are very encouraging due to multifold enhancement in thermo physical and chemical properties of modified fuel such as high surface to volume ratio, high reactive medium for combustion, enhanced heat and mass transport properties due to high thermal conductivity, improvement in flash point, fire point, pour point etc depending upon the type of nanoparticles used, their particle size and concentration with base fuel. Despite having all superiorities, somewhat unclear and contradictory results are found in the literature, further the experimental results of different researchers are not generalized so far as to reach at common consensus about this new approach of fuel modification. Keeping all these facts in mind, a serious attempt has been made to summarize the important published work on combustion and stability aspects of nanoparticle laden diesel, biodiesel fuels and their blends, and its effects on fuel and engine overall characteristics with the objective to provide a pathway to conduct further research in this area for utilizing maximum potential of nanoparticle fuel emulsion technology and to provide a promising future fuel for diesel engine.
Keywords: Nanoparticles; Diesel; Biodiesel; Combustion; Stability; Performance; Emission (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116308012
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:70:y:2017:i:c:p:563-588
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.11.067
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().