EconPapers    
Economics at your fingertips  
 

Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system

Wajahat Ullah Tareen, Saad Mekhilef, Mehdi Seyedmahmoudian and Ben Horan

Renewable and Sustainable Energy Reviews, 2017, vol. 70, issue C, 635-655

Abstract: The deep integration of renewable energy resources, including solar photovoltaic (PV) and wind turbine (WT) energy, mainly depend on the inexpensive technological improvement of global emissions and the precise techniques for power quality. Grid-connected inverters act as key components in distributed generation systems for cutting-edge technology. The inverter connects the renewable energy sources and power distribution network systems for the conversion of power. In grid-connected systems, several current and voltage harmonics affect the system performances. Likewise, highly unstable devices coupled with the growing demand for nonlinear loads and renewable energy resources influence the power networks and systems performance in terms of power quality. The effective solutions to these problems are passive filters (PFs), static var generators, and active power filters (APFs). However, the use of PFs in a high-power system increases its cost, size, and weight. This study aims to assess the most advanced APFs by reducing the number of power switches and focus on the reduction of cost, size, and weight of grid-connected inverters. Several studies compared and evaluated reduced-switch-count APF inverter topologies, such as AC–AC, back-to-back, and common leg, under the single-phase and three-phase systems. Recently, cost-effective solutions to reduce the number of components, transformerless inverters, multilevel and multifunctional inverters based on the APF in PV, and wind energy conversion systems have been greatly explored. The current techniques and their limitations for developing advanced inverter-based devices for renewable energy systems are discussed with justifications. Therefore, this review would potentially help industrial researchers improve power quality in PV and WT energies and power distribution network systems.

Keywords: Active filter; Power quality; Grid-connected system; Transformerless inverter; Renewable energy integration; Reduced-switch-count inverter (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116308267
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:70:y:2017:i:c:p:635-655

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2016.11.091

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:635-655