EconPapers    
Economics at your fingertips  
 

Optical properties of various nanofluids used in solar collector: A review

S.H.A. Ahmad, R. Saidur, I.M. Mahbubul and F.A. Al-Sulaiman

Renewable and Sustainable Energy Reviews, 2017, vol. 73, issue C, 1014-1030

Abstract: Different properties of nanofluids have been studied by the researchers since the last two decades. Most of the studies have focused on the thermal properties of the nanofluids. However, optical properties have considerable contribution to heat absorbance in nanofluids. Therefore, it is necessary to study the different parts of solar spectrum (optical properties) to utilize nanofluids in solar thermal applications. The optical properties (absorption, transmittance, scattering, and extinction coefficient) based on metal, metal oxide, carbon nanotubes, graphite, and graphene have been reviewed thoroughly in variation with particle size and shape, path length, and volume fraction. The present investigational outcomes about the nanofluids showed that optical solar absorption increased accordingly with increasing nanoparticle size and volume concentration. However, there were some conflicting results on the effects of nanoparticle size on absorption, in which the particle size has an insignificant effect on overall optical properties. Moreover, it was observed that path length has some remarkable effects over optical absorption of nanofluids. The experimental results revealed that the transmittance of nanofluids has indirect relation with nanoparticle size, volume fraction, and path length. The scattering of light is directly proportional to the volume concentration and particle size of metallic particles. Overall, results of various elements showed that the presence of large particles and particle agglomerates leads to significant amount of light scattering. As a result, overall extinction coefficient will be increased. Therefore, an optimization of these properties need to be maintained for stable and cost-effective nanofluid.

Keywords: Nanofluids; Absorption coefficient; Transmittance; Scattering coefficient; Extinction coefficient; Solar collector (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117301843
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:73:y:2017:i:c:p:1014-1030

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2017.01.173

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:1014-1030