Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose
Luis E. Juanicó,
Nicolás Di Lalla and
Alejandro D. González
Renewable and Sustainable Energy Reviews, 2017, vol. 73, issue C, 187-195
Abstract:
A comprehensive analysis of low-cost solar collectors based on a single long plastic LDPE hose resting on a roof and working by thermosiphon is performed. This lay-out involves two challenging issues, high hydraulic resistances and low tilt angles, which shall be solved. We have developed a full thermal-hydraulic and thermal-solar modeling to optimize the collector's parameters to achieve a good performance under thermosiphon conditions. This modeling leads to strong coupling effects between the variables, showing that thermal-hydraulic mechanisms are as important as thermal-solar phenomena. We have investigated several cases comprising variation in the collector's parameters: hose diameter and length, tank height and volume, number and quality of glazing layers, roof tilt angle and climatic conditions. It is found that, all year round, this collector can provide 150l of sanitary hot water at minimum 45°C in tropical and temperate climates by using a 100-meter 1.5″-diameter LDPE hose, for roofs tilted 20° or more. In addition, for horizontal roofs, the desired goal could be achieved with a 2″-diameter hose instead. On the other hand, the model also shows that using longer hoses and many wrapping layers lead to worse performances, meanwhile to raise the tank causes slight improvements. The proposed modeling, comprising three coupled phenomena, makes possible to design a simple and robust collector that can be locally manufactured using materials available in hardware store. Due to cost and maintenance feasibility, we find that this option could be useful for developing countries with temperate and tropical climates.
Keywords: Thermal-hydraulic modeling; Thermal-solar modeling; Low-cost solar water heater; Polymeric solar collector; Thermosyphon solar water heating system (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117301363
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:73:y:2017:i:c:p:187-195
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.01.126
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().