A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel
P.U. Okoye,
A.Z. Abdullah and
B.H. Hameed
Renewable and Sustainable Energy Reviews, 2017, vol. 74, issue C, 387-401
Abstract:
The increased awareness and demand for green energy sources, such as biodiesel (BD), have impelled an increase in the production of its byproduct, glycerol, which is now considered an oversupplied commodity. However, the excessive supply and physicochemical properties of glycerol render this compound as an attractive material for fine chemical synthesis, which can boost the BD market. Pathways for synthesis of fine chemicals from glycerol have been proposed by a number of researchers by using different heterogeneous or homogeneous catalysts, with the former being more environmentally benign. Glycerol acetylation pathway with acetic acid has received increased research attention because of the vast potential applications of its products. Therefore, studies were conducted to propose kinetic models for acetylation reaction and catalyst deactivation and determine parameters influencing acetylation rate. This study also provides insights into assumptions of pseudo first-order rate, PSSH, mass transfer, and diffusion limitation and discusses the future trends of catalytic acetylation of glycerol.
Keywords: Acetylation; Biodiesel; Catalyst; Deactivation; Glycerol; Kinetics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117302216
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:74:y:2017:i:c:p:387-401
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.02.017
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().