EconPapers    
Economics at your fingertips  
 

Turning off the DRIP (‘Data-rich, information-poor’) – rationalising monitoring with a focus on marine renewable energy developments and the benthos

Thomas A. Wilding, Andrew B. Gill, Arjen Boon, Emma Sheehan, Dauvin, Jean–Claude, Jean-Philippe Pezy, O’Beirn, Francis, Urszula Janas, Liis Rostin and Ilse De Mesel

Renewable and Sustainable Energy Reviews, 2017, vol. 74, issue C, 848-859

Abstract: Marine renewable energy developments (MREDs) are rapidly expanding in size and number as society strives to maintain electricity generation whilst simultaneously reducing climate-change linked CO2 emissions. MREDs are part of an ongoing large-scale modification of coastal waters that also includes activities such as commercial fishing, shipping, aggregate extraction, aquaculture, dredging, spoil-dumping and oil and gas exploitation. It is increasingly accepted that developments, of any kind, should only proceed if they are ecologically sustainable and will not reduce current or future delivery of ecosystem services. The benthos underpins crucial marine ecosystem services yet, in relation to MREDs, is currently poorly monitored: current monitoring programmes are extensive and costly yet provide little useful data in relation to ecosystem-scale-related changes, a situation called ‘data-rich, information-poor’ (DRIP). MRED –benthic interactions may cause changes that are of a sufficient scale to change ecosystem services provision, particularly in terms of fisheries and biodiversity and, via trophic linkages, change the distribution of fish, birds and mammals. The production of DRIPy data should be eliminated and the resources used instead to address relevant questions that are logically bounded in time and space. Efforts should target identifying metrics of change that can be linked to ecosystem function or service provision, particularly where those metrics show strongly non-linear effects in relation to the stressor. Future monitoring should also be designed to contribute towards predictive ecosystem models and be sufficiently robust and understandable to facilitate transparent, auditable and timely decision-making.

Keywords: Benthos; Biodiversity; Confidence and risk; Environmental impact assessment; Monitoring; Spatial and temporal scales; Study design; Offshore; Tidal- and wave-power; Wind-turbines (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117303295
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:74:y:2017:i:c:p:848-859

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2017.03.013

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:848-859