A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting
Zhen Shao,
Fu Chao,
Shan-Lin Yang and
Kai-Le Zhou
Renewable and Sustainable Energy Reviews, 2017, vol. 75, issue C, 123-136
Abstract:
Electricity consumption data is regarded as nonlinear, non-stationary series, and is often made up by a superposition of several distinct frequencies. Thus most of the conventional approaches currently employed for the modeling and forecasting involve great complexity and uncertainty. Recently, fluctuation characteristic analysis has increasingly become essential step in the application of electricity demand forecasting, yet the implementation of this analysis is an inherently difficult task. To obtain reasonable accuracy and stability in the modeling, there has been the tendency to accommodate multidimensional attributes of the consumption demands with decomposition based approach in terms of more advanced and hybrid form. And the decomposition can be achieved through utilization of two different procedures, namely component model-based and frequency domain analysis-based decomposition. Consequently, a comprehensive review and summarization of decomposition based approach for the prediction is conducted in this paper. More specifically, the issues of demand forecasting classification, the dependency between the electricity demand and external indicators, features of various decomposition approach, as well as the unique fluctuation characteristic of electricity demand at different time scales are discussed. In addition, future research directions of the decomposition based prediction approach are outlined.
Keywords: Decomposition; Frequency domain analysis; Component model; Short term forecast; Mid-long term forecast; Electricity demand (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116307080
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:75:y:2017:i:c:p:123-136
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2016.10.056
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().