EconPapers    
Economics at your fingertips  
 

Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options

Thomas Gibon, Anders Arvesen and Edgar G. Hertwich

Renewable and Sustainable Energy Reviews, 2017, vol. 76, issue C, 1283-1290

Abstract: The targeted transition towards an electricity system with low or even negative greenhouse gas emissions affords a chance to address other environmental concerns as well, but may potentially have to adjust to the limited availability of assorted non-fossil resources. Life cycle assessment (LCA) is widely recognized as a method appropriate to assess and compare product systems taking into account a wide range of environmental impacts. Yet, LCA could not inform the latest assessment of co-benefits and trade-offs of climate change mitigation by the Intergovernmental Panel on Climate Change due to the lack of comparative assessments of different electricity generation technologies addressing a wide range of environmental impacts and using a consistent set of methods. This paper contributes to filling this gap. A consistent set of life cycle inventories of a wide range of electricity generation technologies is assessed using the Recipe midpoint methods. The life-cycle inventory modeling addresses the production and deployment of the technologies in nine different regions. The analysis shows that even though low-carbon power requires a larger amount of metals than conventional fossil power, renewable and nuclear power leads to a reduction of a wide range of environmental impacts, while CO2 capture and storage leads to increased non-GHG impacts. Biomass has relatively modest co-benefits, if at all. The manufacturing of low-carbon technologies is important compared to their operation, indicating that it is important to choose the most desirable technologies from the outset.

Keywords: Hybrid life-cycle assessment; Climate change mitigation scenario; Wind power; Photovoltaics; Concentrating solar power; Bioenergy with CCS (BECCS); Nuclear energy; Geothermal energy; Coal power; Natural gas combined cycle (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117304215
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:76:y:2017:i:c:p:1283-1290

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2017.03.078

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1283-1290