EconPapers    
Economics at your fingertips  
 

Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives

Kiros Hagos, Jianpeng Zong, Dongxue Li, Chang Liu and Xiaohua Lu

Renewable and Sustainable Energy Reviews, 2017, vol. 76, issue C, 1485-1496

Abstract: Globally, there is increasing awareness that renewable energy and energy efficiency are vital for both creating new economic opportunities and controlling the environmental pollution. AD technology is the biochemical process of biogas production which can change the complex organic materials into a clean and renewable source of energy. AcoD process is a reliable alternative option to resolve the disadvantages of single substrate digestion system related to substrate characteristics and system optimization. This paper reviewed the research progress and challenges of AcoD technology, and the contribution of different techniques in biogas production engineering. As the applicability and demand of the AcoD technology increases, the complexity of the system becomes increased, and the characterization of organic materials becomes volatile which requires advanced methods for investigation. Numerous publications have been noted that ADM1 model and its modified version becomes the most powerful tool to optimize the AcoD process of biogas production, and indicating that the disintegration and hydrolysis steps are the limiting factors of co-digestion process. Biochemical methane potential (BMP) test is promising method to determine the biodegradability and decomposition rate of organic materials. The addition of different environmentally friendly nanoparticles can improve the stability and performance of the AcoD system. The process optimization and improvement of biogas production still seek further investigations. Furthermore, using advanced simulation approaches and characterization methods of organic wastes can accelerate the transformation to industrializations, and realize the significant improvement of biogas production as a renewable source and economically feasible energy in developing countries, like China. Finally, the review reveals, designing and developing a framework, including various aspects to improve the biogas production is essential.

Keywords: Anaerobic co-digestion; Biogas production; Biochemical methane potential; Biodegradability; Modeling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (73)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032116309388
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:76:y:2017:i:c:p:1485-1496

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2016.11.184

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:1485-1496