Decreasing desired opportunity for energy supply of a globally acclaimed biofuel crop in a changing climate
Junhua Hu
Renewable and Sustainable Energy Reviews, 2017, vol. 76, issue C, 857-864
Abstract:
Under the pressure of growing populations and climate change globally, biofuel crops have motivated accelerating interest in the production of renewable bioenergy to provide a substantial proportion of the future energy supply. Both habitat suitability for cultivation and potential aggravating environmental problems from biofuel crops attract concerns worldwide. Jatropha curcas L. (Jatropha) is acclaimed as a magical biofuel crop with high potential to replace fossil fuels sustainably, as well as a multitude of environmental benefits. However, Jatropha is categorized as an invasive plant with a massive investment in new cultivations on a global scale but without a profound ecological knowledge. Given the ambitious policy target in production, it is urgent to achieve spatially explicit estimates of habitat suitability for increasing cultivation of Jatropha. The opportunities and risks for Jatropha were evaluated under climate change using the minimum and maximum representative concentration pathways (RCP2.6 and RCP8.5) by 2100. The extent of predicted suitable habitats may shrink by more than 45%, regardless of time slices, and the RCPs even considered assuming the most optimistic ability of dispersal. The impacts of climate change vary considerably among continents with the greater habitat loss in the Americas and Oceania than in Asia and Africa, and a high risk of habitat loss at low latitudes. The findings indicate that Jatropha would show a decreasing opportunity for desired energy supply. Due to the complexities of the likely impacts of climate change, this study provides important insights into developing cultivation policies for the utilization of Jatropha within a sustainable biofuel program.
Keywords: Climate change; Ecological niche models; Energy supply; Jatropha curcas L.; Cultivation; Sustainability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403211730429X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:76:y:2017:i:c:p:857-864
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.03.093
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().