Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review
Muhammad Shakeel Ahmad,
A.K. Pandey and
Nasrudin Abd Rahim
Renewable and Sustainable Energy Reviews, 2017, vol. 77, issue C, 89-108
Abstract:
Dye sensitized solar cells (DSSCs) are widely studied for the safe and reliable energy supply. Due to its low fabrication cost, eco-friendly production and competitive efficiency, this is the promising technology. The components of DSSC which combine to form a photo conversion device are the conducting substrate, dye, photoanode, catalyst and electrolyte. Each component has its own importance but among them photoanode is probability the main component which determines the energy conversion efficiency. Various photoanode materials have been trialled to date. Among them Zn and TiO2 are widely recognized, researched and investigated. In this review attempt will be made to examine the strategies to improve the efficiency of TiO2 photoanode. This review is dedicated to the TiO2 photoanode, its properties, issues related to TiO2 photoanode, various improvement approaches, fabrication methods successfully trialled so far followed by market potential of the DSSC technology, conclusion and recommendations.
Keywords: Charge transfer; Dye sensitized solar cell; Fabrication; Light absorption; Photoanode (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117304616
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:77:y:2017:i:c:p:89-108
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.03.129
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().