Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review
Atasi Dan,
Harish C. Barshilia,
Kamanio Chattopadhyay and
Bikramjit Basu
Renewable and Sustainable Energy Reviews, 2017, vol. 79, issue C, 1050-1077
Abstract:
The effective use of solar energy has become significantly important due to unnatural weather changes and fossil fuel exhaustion. Concentrating Solar Power (CSP) technology is a promising approach to harvest solar energy in the form of heat using solar selective absorber coating. These coatings are expected to absorb maximum incoming solar radiation (α ≥ 0.95) and prevent loss of the absorbed energy as infrared radiation (ε ≤ 0.05). Efficiency of the absorber coating can be evaluated by a metric called “Solar selectivity (α/ε)”. In recent years, a number of attempts have been made to achieve remarkable selective property and high temperature stability of the absorber coating using the concept of Surface Plasma Polaritons (SPPs). The SPPs have the capability to capture solar energy by confining electromagnetic field at the metal-dielectric interface. Solar absorption, can be maximized by tailoring the optical constants of the metal and dielectric. In this review, we have described different types of solar absorber coatings with particular emphasis on dielectric-metal-dielectric (DMD) -based absorber coatings. We have presented a brief theoretical overview to comprehend physics of DMD coatings. This review additionally highlights some of the case studies based on the DMD -based absorber coatings with the high temperature stability and their importance in the context of CSP technologies.
Keywords: Solar energy; Concentrating solar power; Solar selective absorber coating; Surface plasma polaritons; Dielectric-metal-dielectric stack (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117306986
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:79:y:2017:i:c:p:1050-1077
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.05.062
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().