Review on probabilistic forecasting of photovoltaic power production and electricity consumption
D.W. van der Meer,
J. Widén and
J. Munkhammar
Renewable and Sustainable Energy Reviews, 2018, vol. 81, issue P1, 1484-1512
Abstract:
tAccurate forecasting simultaneously becomes more important and more challenging due to the increasing penetration of photovoltaic (PV) systems in the built environment on the one hand, and the increasing stochastic nature of electricity consumption, e.g., through electric vehicles (EVs), on the other hand. Until recently, research has mainly focused on deterministic forecasting. However, such forecasts convey little information about the possible future state of a system and since a forecast is inherently erroneous, it is important to quantify this error. This paper therefore focuses on the recent advances in the area of probabilistic forecasting of solar power (PSPF) and load forecasting (PLF). The goal of a probabilistic forecast is to provide either a complete predictive density of the future state or to predict that the future state of a system will fall in an interval, defined by a confidence level. The aim of this paper is to analyze the state of the art and assess the different approaches in terms of their performance, but also to what extent these approaches can be generalized so that they not only perform best on the data set for which they were designed, but also on other data sets or different case studies. In addition, growing interest in net demand forecasting, i.e., demand less generation, is another important motivation to combine PSPF and PLF into one review paper and assess compatibility. One important finding is that there is no single preferred model that can be applied to any circumstance. In fact, a study has shown that the same model, with adapted parameters, applied to different case studies performed well but did not excel, when compared to models that were optimized for the specific task. Furthermore, there is need for standardization, in particular in terms of filtering night time data, normalizing results and performance metrics.
Keywords: Probabilistic forecasting; Electricity consumption; Photovoltaic; Solar radiation; Irradiance; Prediction interval (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (82)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117308523
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:81:y:2018:i:p1:p:1484-1512
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.05.212
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().