Forecasting daily global solar irradiance generation using machine learning
Amandeep Sharma and
Ajay Kakkar
Renewable and Sustainable Energy Reviews, 2018, vol. 82, issue P3, 2254-2269
Abstract:
Rechargeable wireless sensor networks mitigate the life span and cost constraints propound in conventional battery operated networks. Reliable knowledge of solar radiation is essential for informed design, deployment planning and optimal management of self-powered nodes. The problem of solar irradiance forecasting can be well addressed by machine learning methodologies over historical data set. In proposed work, forecasts have been done using FoBa, leapForward, spikeslab, Cubist and bagEarthGCV models. To validate the effectiveness of these methodologies, a series of experimental evaluations have been presented in terms of forecast accuracy, correlation coefficient and root mean square error (RMSE). The r interface has been used as simulation platform for these evaluations. The dataset from national renewable energy laboratory (NREL) has been used for experiments. The experimental results exhibits that from few hours to two days ahead solar irradiance prediction is precisely estimated by machine learning based models irrespective of seasonal variation in weather conditions.
Keywords: Solar irradiance; Energy harvesting; Solar forecasting; Machine learning (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117312121
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:82:y:2018:i:p3:p:2254-2269
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2017.08.066
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().