EconPapers    
Economics at your fingertips  
 

Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels

Xin Li, Xingyi Luo, Yangbin Jin, Jinyan Li, Hongdan Zhang, Aiping Zhang and Jun Xie

Renewable and Sustainable Energy Reviews, 2018, vol. 82, issue P3, 3762-3797

Abstract: Biodiesel as a substitute of traditional petroleum-derived liquid fuels has been put into use in recent years. However, the first generation biodiesel (fatty acid methyl esters) with high oxygen content is inconvenient for large-scale use due to its incompatible nature with fossil fuels. As a result, green biodiesel (the second generation biofuel) prepared from catalytic hydrodeoxygenation (HDO) of the first generation biodiesel has been gradually developed. The biodiesel after deoxygenation which has a great number of advantages is similar to petroleum fuel in composition, so it can be employed directly in fuel industry. To obtain the expected products, accessible production processes and suitable catalyst systems are needed. In this review, we first make an analysis on the pathways and processes of deoxygenation reactions including hydrodeoxygenation, decarboxylation and decarbonylation. Selectivity to reaction pathways has a close relationship with raw materials, catalysts or reaction conditions. The special goal of this review is to highlight the advances in the heterogeneous sulfur-free catalysts used for deoxygenation, including the sulfur-free noble metals, non-noble metals, metal phosphides, metal carbides and metal nitrides. We thoroughly discussed the different performances of these developed catalysts in the deoxygenation reactions, such as activity, selectivity and stability. Fundamental mechanisms over sulfur-free catalysts, including experimental comparison of different active phases and calculations by Density Function Theory (DFT), were also addressed. This review also involved effects of different support materials, composition, structure optimization, water and H2 pressure on the HDO activity and silectivity, and detailed information about catalyst deactivation. It is expected that this review can provide some new design and modification strategies for fabricating highly active,selective and durable earth-abundant HDO catalysts for the substainable production of green bio-diesel.

Keywords: Renewable biodiesel; Selective deoxygenation; Hydrodeoxygenation (HDO); Biofuels; Sulfur-free metal catalysts; Support effects; Deactivation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032117314557
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:82:y:2018:i:p3:p:3762-3797

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2017.10.091

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3762-3797