EconPapers    
Economics at your fingertips  
 

Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type

Chaonan Ma, Jianyong Liu, Min Ye, Lianpei Zou, Guangren Qian and Yu-You Li

Renewable and Sustainable Energy Reviews, 2018, vol. 90, issue C, 700-709

Abstract: Food waste (FW), which contains a large amount of easily biodegradable organic matter, has great potential for methane production using anaerobic digestion (AD). However, the bioenergy conversion efficiency in this method is not ideal because FW has a long hydraulic retention time (HRT) of > 20 days, low organic loading rate (OLR) of 1–6 g VS /L.d and low bioenergy conversion rate 40–70%. To improve the efficiency of bioenergy conversion, pretreatment technologies, co-digestion with other organic wastes and the effect of reactor types are reviewed and discussed. Enzymatic pretreatment and co-digestion of FW with landfill leachate are preferable for hydrolysis of organic solids, enhancement of methane production and stability improvement of the AD system. Based on the discussion and our preliminary experiment results, the feasibility of FW treatment using a third generation anaerobic reactor is proposed and analyzed. If the proposed concept can be applied practically in the future, more than 90% of the organic matter in FW could be recovered as bioenergy with an OLR greater than 20 kg COD/m3 d.

Keywords: Food waste; Bioenergy conversion; Pretreatment; Co-digestion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118302016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:90:y:2018:i:c:p:700-709

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2018.03.110

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:90:y:2018:i:c:p:700-709