Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)
Mehdi Mehrpooya,
Maryam Khalili and
Mohammad Mehdi Moftakhari Sharifzadeh
Renewable and Sustainable Energy Reviews, 2018, vol. 91, issue C, 869-887
Abstract:
Worldwide growing demand for energy consumption in recent years arising from industrialization development and increasing earth population has caused more environmental concerns to emerge. On the other hand, specific issues related to the use of fossil fuels as a nonrenewable source of energy has been caused alternative fuels like biomass to be investigated with more concern. Generally, gasification is a process which converts organic matter to gas and tar. Also, through the gasification, biomass as a fuel is converted to the combustible gas (syngas). In this study, modeling and simulation of the biomass gasification process is investigated and analyzed considering 23 different kinds of the biomass sources. The proposed model is based on the Gibbs free energy minimization and the restricted equilibrium method is used for calibration. The process operating performance is analyzed thermodynamically based on the hydrogen production yield. In this regard, effective parameters like temperature of the gasification, air-fuel ratio, steam-biomass ratio and temperature of the air and steam streams are investigated. Gasification temperature and steam-biomass ratio affect the syngas compositions and the heating value significantly. Biomass moisture has the most significant impact on the syngas production efficiency. Also, other parameters which are not very intensive but still have an effect on the syngas production efficiency, are examined. Finally, the process performance is analyzed based on the energy and exergy analysis methods. The obtained results show that, exergy efficiency of drying stage is the highest (about 90.0%) in all cases. Nonetheless, exergy destruction rate for this stage is a great value against the others. Among the selected biomasses, Rice husk type has the greatest exergy destruction rate which is related to the tar combustion and decomposition reactors; respectively.
Keywords: Gasifier; Gasification; Biomass; Hydrogen; Energy; Exergy efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118303022
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:91:y:2018:i:c:p:869-887
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.04.076
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().