Worldwide application of aquifer thermal energy storage – A review
Paul Fleuchaus,
Bas Godschalk,
Ingrid Stober and
Philipp Blum
Renewable and Sustainable Energy Reviews, 2018, vol. 94, issue C, 861-876
Abstract:
To meet the global climate change mitigation targets, more attention has to be paid to the decarbonization of the heating and cooling sector. Aquifer Thermal Energy Storage (ATES) is considered to bridge the gap between periods of highest energy demand and highest energy supply. The objective of this study therefore is to review the global application status of ATES underpinned by operational statistics from existing projects. ATES is particularly suited to provide heating and cooling for large-scale applications such as public and commercial buildings, district heating, or industrial purposes. Compared to conventional technologies, ATES systems achieve energy savings between 40% and 70% and CO2 savings of up to several thousand tons per year. Capital costs decline with increasing installed capacity, averaging 0.2 Mio. € for small systems and 2 Mio. € for large applications. The typical payback time is 2–10 years. Worldwide, there are currently more than 2800 ATES systems in operation, abstracting more than 2.5 TWh of heating and cooling per year. 99% are low-temperature systems (LT-ATES) with storage temperatures of < 25 °C. 85% of all systems are located in the Netherlands, and a further 10% are found in Sweden, Denmark, and Belgium. However, there is an increasing interest in ATES technology in several countries such as Great Britain, Germany, Japan, Turkey, and China. The great discrepancy in global ATES development is attributed to several market barriers that impede market penetration. Such barriers are of socio-economic and legislative nature.
Keywords: Underground thermal energy storage; Geothermal energy; Renewable energy; Seasonal thermal energy storage; Heating and cooling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118304933
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:94:y:2018:i:c:p:861-876
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.06.057
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().