Multi-agent simulation for planning and designing new shared mobility services
Giuseppe Inturri,
Michela Le Pira,
Nadia Giuffrida,
Matteo Ignaccolo,
Alessandro Pluchino,
Andrea Rapisarda and
Riccardo D'Angelo
Research in Transportation Economics, 2019, vol. 73, issue C, 34-44
Abstract:
Limiting private cars' use while promoting sustainable modes of transport is one of the main challenges of urban transport planning. In this context, characterized by scarce resources and increasing demand for mobility, Demand Responsive Shared Transport (DRST) services can bridge the gap between shared low-quality public transport and unsustainable individual private transport. Taking advantage of Information and Communication Technologies (ICT), they can supply transport solutions ranging from flexible transit to ride sharing services, providing real-time “on demand” mobility through fleets of vehicles shared by different passengers. The optimal design of a DRST service requires a trade-off among efficiency (from the operators' point of view), service quality (from the users' point of view) and sustainability (from the community's point of view). In this paper, an agent-based model (ABM) fed with GIS data is used to explore different system configurations of a specific type of DRST service, i.e. flexible transit, and to estimate the transport demand and supply variables that make the service feasible and convenient. The model reproduces a mixed fixed/flexible route transit service with different fleet size and vehicle capacity in the city of Ragusa (Italy) with the aim to: (i) make a first test of the ABM model with GIS-based demand and road network models; (ii) explore different vehicle dispatching strategies; (iii) find appropriate indicators to monitor the service quality and efficiency. Simulation results show the impact of fleet composition and route choice strategy on the system performance. In particular, they show an optimal range of operating vehicles that minimizes a total unit cost indicator, accounting both for passenger travel time and vehicle operation cost. By reproducing the microinteraction between demand and supply agents (i.e. passengers and vehicles), it is possible to monitor the macroscopic behaviour of the system, and derive useful suggestions for the correct planning, management and optimization of DRST services.
Keywords: Sustainable mobility; Flexible transit; Demand responsive transport; On-demand mobility; Mobility as a service; Agent-based model (search for similar items in EconPapers)
JEL-codes: C63 R41 R42 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0739885919300654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:retrec:v:73:y:2019:i:c:p:34-44
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_2&version=01
DOI: 10.1016/j.retrec.2018.11.009
Access Statistics for this article
Research in Transportation Economics is currently edited by M. Dresner
More articles in Research in Transportation Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().