Revisiting overconfidence in investment decision-making: Further evidence from the U.S. market
Ahmed Bouteska,
Murad Harasheh and
Mohammad Zoynul Abedin
Research in International Business and Finance, 2023, vol. 66, issue C
Abstract:
Investor overconfidence leads to excessive trading due to positive returns, causing inefficiencies in stock markets. Using a novel methodology, we build on the previous literature by investigating the existence of overconfidence by studying the causal relationship between return and trading volume covering the COVID-19 period. We implement a nonlinear approach to Granger causality based on multilayer feedforward neural networks on daily returns and trading volumes from 2016 to 2021, covering 1424 daily observations of the S&P 500 index. The results provide evidence of overconfidence among investors. Such behavior may be linked to the increase in the number of investors. However, there is a decline in the rate of returns during the study period, implying uncertainty caused by the COVID-19 pandemic.
Keywords: Finance; Overconfidence; Granger causality; Artificial neural networks; U.S. stock market (search for similar items in EconPapers)
JEL-codes: C45 G11 G41 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S027553192300154X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:riibaf:v:66:y:2023:i:c:s027553192300154x
DOI: 10.1016/j.ribaf.2023.102028
Access Statistics for this article
Research in International Business and Finance is currently edited by T. Lagoarde Segot
More articles in Research in International Business and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().