EconPapers    
Economics at your fingertips  
 

A multistage method to measure efficiency and its application to Japanese banking industry

Junming Liu and Kaoru Tone

Socio-Economic Planning Sciences, 2008, vol. 42, issue 2, 75-91

Abstract: When measuring technical efficiency with existing data envelopment analysis (DEA) techniques, mean efficiency scores generally exhibit volatile patterns over time. This appears to be at odds with the general perception of learning-by-doing management, due to Arrow [The economic implications of learning by doing. Review of Economic Studies 1964; 154-73]. Further, this phenomenon is largely attributable to the fundamental assumption of deterministic data maintained in DEA models, and to the difficulty such models have in incorporating environmental influences. This paper proposes a three-stage method to measure DEA efficiency while controlling for the impacts of both statistical noise and environmental factors. Using panel data on Japanese banking over the period 1997-2001, we demonstrate that the proposed approach greatly mitigates these weaknesses of DEA models. We find a stable upward trend in mean measured efficiency, indicating that, on average, the bankers were learning over the sample period. Therefore, we conclude that this new method is a significant improvement relative to those DEA models currently used by researchers, corporate management, and industrial regulatory bodies to evaluate performance of their respective interests.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038-0121(06)00030-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:42:y:2008:i:2:p:75-91

Access Statistics for this article

Socio-Economic Planning Sciences is currently edited by Barnett R. Parker

More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:soceps:v:42:y:2008:i:2:p:75-91