Prepositioning of supplies in preparation for a hurricane under potential destruction of prepositioned supplies
Gina Galindo and
Rajan Batta
Socio-Economic Planning Sciences, 2013, vol. 47, issue 1, 20-37
Abstract:
Hurricanes are a type of natural disaster for which it is possible to plan for prepositioning of supplies to improve the efficiency of the post-disaster relief effort. This paper develops a model for prepositioning supplies in such a setting. Our model has a distinguishing feature the possible destruction of supply points during the disaster event. To gain insight into our model, we develop a series of theoretical properties. To test the applicability of our model a series of computational tests are performed. From such tests we conclude that it is possible to solve relatively large instances of the problem utilizing standard optimization software. A methodology based on creation of clusters of demand points is proposed for solving even larger problems. Finally we study sensitivity of the results with respect to key parameters. These investigations provide important policy implications.
Keywords: Logistics; Prepositioning supplies; Disaster; Facility location; Optimization; Spatial autocorrelation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012112000596
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:47:y:2013:i:1:p:20-37
DOI: 10.1016/j.seps.2012.11.002
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().