The motifs of risk transmission in multivariate time series: Application to commodity prices
Paolo Pagnottoni and
Alessandro Spelta
Socio-Economic Planning Sciences, 2023, vol. 87, issue PB
Abstract:
In this article we propose to exploit topological information embedded in forecast error variance decomposition derived from large Bayesian vector autoregressive models (VAR) to study network connectedness and risk transmission of multivariate time series observations. Firstly, we design a robust link classification procedure based on shortest paths, so to identify salient directional spillovers in a high-dimensional framework. Secondly, we study recurrent and statistically significant sub-graphs, i.e. network motifs, on the induced network backbone by means of null models which account for local node heterogeneity. The methodology is applied to analyze spillover networks of a set of global commodity prices. We demonstrate that spillovers become key drivers of the system variance during commodity price bubbles and bursts, giving raise to complex triadic structures which do not manifest during normal business periods. By accounting for local node connectivity, we observe a departure from the null models due to the high participation of Crude Oil, Food and Beverages and Raw Materials in complex recurrent sub-graphs.
Keywords: Vector autoregression; Bayesian estimation; Forecast error variance decomposition; Spillovers; Network motifs; Systemic risk (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012122002609
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012122002609
DOI: 10.1016/j.seps.2022.101459
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().