Factor-Augmented Autoregressive Neural Network to forecast NOx in the city of Madrid
Gema Fernández-Avilés,
Raffaele Mattera and
Germana Scepi
Socio-Economic Planning Sciences, 2024, vol. 95, issue C
Abstract:
Air pollution poses a significant threat to public health and the environment in urban areas worldwide. In the context of urban air quality, nitrogen oxides (NOx), comprising nitrogen dioxide (NO2) and nitric oxide (NO), stand out as key pollutants with well-documented adverse effects. The city of Madrid, as the capital and largest urban center of Spain and the third largest of Europe, is no exception to the challenges posed by NOx pollution. Most of the recent literature on forecasting air pollution, and specifically on NOx, is based on the use of Neural Networks (NN). Little is known about the forecasting ability of factor models in this context. The main aim of this paper is to use Factor-Augmented Autoregressive Neural Networks (FA-ARNN-X) to predict future patterns of NOx pollutants in the territorial monitoring stations of Madrid, using lagged NOx values, meteorological variables and latent factors. The main results indicate that the proposed forecasting model provides statistically more accurate predictions of air pollution than its competing benchmarks and should be used by policymakers for more accurate air pollution monitoring.
Keywords: Factor model; Spatio-temporal data; Environmental forecasting; Neural networks; Principal Component (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0038012124001575
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124001575
DOI: 10.1016/j.seps.2024.101958
Access Statistics for this article
Socio-Economic Planning Sciences is currently edited by Barnett R. Parker
More articles in Socio-Economic Planning Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().