EconPapers    
Economics at your fingertips  
 

Functional limit theorems for multitype branching processes and generalized Pólya urns

Svante Janson

Stochastic Processes and their Applications, 2004, vol. 110, issue 2, 177-245

Abstract: A functional limit theorem is proved for multitype continuous time Markov branching processes. As consequences, we obtain limit theorems for the branching process stopped by some stopping rule, for example when the total number of particles reaches a given level. Using the Athreya-Karlin embedding, these results yield asymptotic results for generalized Pólya urns. We investigate such results in detail and obtain explicit formulas for the asymptotic variances and covariances. The general formulas involve integrals of matrix functions; we show how they can be evaluated and simplified in important special cases. We also consider the numbers of drawn balls of different types and functional limit theorems for the urns. We illustrate our results by some examples, including several applications to random trees where our theorems and variance formulas give simple proofs of some known results; we also give some new results.

Keywords: Multitype; branching; processes; Generalized; Polya; urns; Urn; models (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00179-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:110:y:2004:i:2:p:177-245

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:110:y:2004:i:2:p:177-245