Tail expansions for the distribution of the maximum of a random walk with negative drift and regularly varying increments
Ph. Barbe,
W.P. McCormick and
C. Zhang
Stochastic Processes and their Applications, 2007, vol. 117, issue 12, 1835-1847
Abstract:
Let F be a distribution function with negative mean and regularly varying right tail. Under a mild smoothness condition we derive higher order asymptotic expansions for the tail distribution of the maxima of the random walk generated by F. The expansion is based on an expansion for the right Wiener-Hopf factor which we derive first. An application to ruin probabilities is developed.
Keywords: Tail; expansion; Random; walk; Regularly; varying; Wiener-Hopf; factor; Ruin; probability (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00038-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:117:y:2007:i:12:p:1835-1847
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().