EconPapers    
Economics at your fingertips  
 

Poincaré inequality for linear SPDE driven by Lévy Noise

Yingchao Xie

Stochastic Processes and their Applications, 2010, vol. 120, issue 10, 1950-1965

Abstract: In this paper, we prove the Poincaré inequality and the integration by parts formula for the invariant measure of the linear SPDE driven by Lévy Noise. The equation was researched in Dong and Xie [5], which has proved the existence and uniqueness of the weak solution and the ergodicity of the Markov semigroup associated with the solution.

Keywords: Poincare; inequality; Integration; by; parts; formula; SPDE; with; Lévy; Noise; Invariant; measure (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00141-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:10:p:1950-1965

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:120:y:2010:i:10:p:1950-1965