Rates of convergence in the central limit theorem for linear statistics of martingale differences
Jérôme Dedecker and
Florence Merlevède
Stochastic Processes and their Applications, 2011, vol. 121, issue 5, 1013-1043
Abstract:
In this paper, we give rates of convergence for minimal distances between linear statistics of martingale differences and the limiting Gaussian distribution. In particular the results apply to the partial sums of (possibly long range dependent) linear processes, and to the least squares estimator in some parametric regression models.
Keywords: Minimal; distances; Ideal; distances; Gaussian; approximation; Martingales; Linear; processes; Long; range; dependence (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(11)00017-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:121:y:2011:i:5:p:1013-1043
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().