EconPapers    
Economics at your fingertips  
 

Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes

Daniel Harnett and David Nualart

Stochastic Processes and their Applications, 2012, vol. 122, issue 10, 3460-3505

Abstract: For a Gaussian process X and smooth function f, we consider a Stratonovich integral of f(X), defined as the weak limit, if it exists, of a sequence of Riemann sums. We give covariance conditions on X such that the sequence converges in law. This gives a change-of-variable formula in law with a correction term which is an Itô integral of f‴ with respect to a Gaussian martingale independent of X. The proof uses Malliavin calculus and a central limit theorem from Nourdin and Nualart (2010) [8]. This formula was known for fBm with H=1/6 Nourdin et al. (2010) [9]. We extend this to a larger class of Gaussian processes.

Keywords: Itô formula; Skorohod integral; Malliavin calculus; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912001366
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:10:p:3460-3505

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.06.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3460-3505