EconPapers    
Economics at your fingertips  
 

Central limit theorems for realized volatility under hitting times of an irregular grid

Masaaki Fukasawa and Mathieu Rosenbaum

Stochastic Processes and their Applications, 2012, vol. 122, issue 12, 3901-3920

Abstract: We consider a continuous semi-martingale sampled at hitting times of an irregular grid. The goal of this work is to analyze the asymptotic behavior of the realized volatility under this rather natural observation scheme. This framework strongly differs from the well understood situations when the sampling times are deterministic or when the grid is regular. Indeed, neither Gaussian approximations nor symmetry properties can be used. In this setting, as the distance between two consecutive barriers tends to zero, we establish central limit theorems for the normalized error of the realized volatility. In particular, we show that there is no bias in the limiting process.

Keywords: Central limit theorem; Hitting times; Irregular grid; Semi-martingales; Stable convergence (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491200172X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:12:p:3901-3920

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.08.005

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:3901-3920