EconPapers    
Economics at your fingertips  
 

The exact packing measure of Lévy trees

Thomas Duquesne

Stochastic Processes and their Applications, 2012, vol. 122, issue 3, 968-1002

Abstract: We study fine properties of Lévy trees that are random compact metric spaces introduced by Le Gall and Le Jan in 1998 as the genealogy of continuous state branching processes. Lévy trees are the scaling limits of Galton–Watson trees and they generalize the Aldous continuum random tree which corresponds to the Brownian case. In this paper, we prove that Lévy trees always have an exact packing measure: we explicitly compute the packing gauge function and we prove that the corresponding packing measure coincides with the mass measure up to a multiplicative constant.

Keywords: Branching processes; Lévy trees; Mass measure; Packing measure (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414911002742
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:3:p:968-1002

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2011.10.013

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:122:y:2012:i:3:p:968-1002